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1. INTRODUCTION

Although most physical systems are continuous in nature the input}output data from these
systems is usually sampled and a discrete-time model is identi"ed. But in some cases
a continuous-time model, which is often easier to relate to the physical operation of the
underlying system, is required. Identi"cation of linear continuous-time models has been
studied by several authors and can be classi"ed into direct and indirect approaches [1]. The
direct approach is based on the output error or equation error methods [2]. The equation
error method has been widely employed and is based on converting the di!erential
equations into a linear algebraic form. Modulating functions, orthogonal polynomials and
linear integral "lters have been used in the literature [3}7]. The indirect approach consists
of "tting either a non-parametric model (step, impulse or frequency response) or a discrete
parametric ARMAX model initially and then constructing a continuous-time model of the
system from this [2, 8, 9].

In the linear time-invariant case, the &&impulse invariance method'' (IIM) [10] is based
upon the equivalence between the linear time-invariant di!erential and di!erence
equations. Zhao and Marmarelis [11] recently extended this basic concept to non-linear
time-invariant models and called the new approach the &&kernel invariance method'' (KLM).
The method exploits the equivalence between the high order kernels associated with
non-linear di!erential and di!erence equation models. The great advantage is that this
approach avoids the direct computation of derivatives which can induce severe numerical
problems and the non-linear model can be constructed sequentially by building in the linear
model terms, followed by the quadratic terms and so on.

Identi"cation of continuous-time non-linear di!erential equation models from sampled
data is an important problem that has only been studied by a few authors [12, 13]. The
KIM o!ers one possible solution to this problem and in the present study the method is
developed into a practical identi"cation procedure. In the original formulation by Zhao and
0022-460X/00/250877#20 $35.00/0 ( 2000 Academic Press
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Marmarelis all the calculations were done by hand, the authors noted that the analysis &&can
be a rather unwieldly task in general as demonstrated by two relatively simple examples'',
and no account was taken of noise e!ects and bias. But in the identi"cation of practical
non-linear systems almost all these restrictions will be violated because the discrete-time
non-linear model that is identi"ed from the input}output data is often complex and can
involve many terms. A new practical procedure is therefore introduced below which uses
a new orthorgonalised version of the generalised least-squares algorithm [14] to select the
signi"cant model terms and to yield unbiased estimates of the parameters in
continuous-time non-linear di!erential equation models. The new method will be refered to
as the kernel invariance algorithm (KIA).

The paper is organised as follows. In section 2, the basic concepts of non-linear system
representations and the KIM are introduced. In section 3, the reconstruction formulation
for linear and non-linear continuous-time models from di!erence equation models is
described, and an orthogonal least-squares procedure is introduced to determine the model
structure. In section 4, a simulation example is used to illustrate the identi"cation
procedure, and in section 5 a real application of an electromagnet bearing control system is
described. Finally, conclusions are given in section 6.

2. THE KERNEL INVARIANCE METHOD (KIM)

A wide class of continuous-time non-linear systems can be represented by the Volterra
functional series [15],
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In the KIM introduced by Zhao and Marmarelis [11] non-linear systems described by

non-linearities of only second degree were considered. This was presumably because of the
complexity associated with higher order non-linear e!ects. However, results are available in
the literature which can be applied immediately to extend these ideas to the much more
realistic and general non-linear case. These results form the basis of the new KIA and are
reviewed below.

Many continuous-time systems can also be characterised by a non-linear di!erential
equation (NDE) model
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where q and p are the number of input and output terms, respectively, with p#q"n, ¸ is
the highest derivative of the input}output and c

p,q
( ) ) represent the model parameters. The

operator D is de"ned by

Dlx (t)"
dlx (t)

dtl
, l*0.

The nth order Volterra kernel can be related to the parameters of the NDE model. In fact,
the multidimensional Laplace transform of the nth order kernel can be shown to be
a function of the NDE model parameters [16]:
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and, without loss of generality, we assume c
1,0

(0)"!1.
A commonly used non-linear discrete-time system model is the NARX model
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where q and p are the number of input and output terms, respectively, and i is the maximum
lag of the input}output terms.

For the NARX model the multidimensional Z transform of the nth order kernel can be
shown to be a function of the NARX model parameters [16]:
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Equations (11) and (12) are the discrete-time equivalents to equations (5) and (6). The nth
order transfer functions of equations (5) and (11) are not necessarily unique because
changing the order of any two arguments generates a new function without changing the
value of y

n
(t) in equations (1) and (8). However, the symmetric version of these functions are

unique and these are given as
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The KIM is based on the fact that the discrete high order kernels are the sampled versions
of their continuous counterparts provided that the sampling interval is su$ciently short to
avoid aliasing. This implies that
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where ¹ is the sampling interval. If n"1 in equation (15) this reduces to the well-known
impulse invariance method (IIM) introduced by Oppenheim and Schafer [10]. Zhao and
Marmarelis extended this to include both the linear model terms and the quadratic terms
and called the new method the KIM. But the restriction to quadratic systems can be
avoided and the results can be generalised to all analytic non-linear systems using the
analysis introduced above. This follows because both the continuous-time and the
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discrete-time models have been related to the kernels in equation (15), so that the left-hand
side of equation (15) Hsym
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However, in system identi"cation we are more likely to obtain the NARX model coe$cients
b
p,q

from sampled measurements of the input}output data. Once these coe$cients have
been estimated the equivalence in equation (15) can be used to construct the NDE model
sequentially by building in the linear model terms followed by the quadratic terms and so
on. In real applications the identi"ed model is likely to be complex and the e!ects of noise or
non-perfect estimates of the Kernel functions should be accommodated. Both these
problems can be addressed by introducing the new KIA described below

3. RECONSTRUCTION FORMULATIONS

From equations (5) to (15), it is clear that the "rst order kernel is only related to the set of
linear coe$cients, the second order kernel is related to the linear and quadratic coe$cients,
the third order kernel is related to the linear, quadratic and cubic coe$cients and so on.
This suggests that the continuous-time model reconstruction procedure can be split and can
be applied sequentially to reconstruct just the linear terms, followed by the quadratic terms,
etc. An important problem at each construction stage is how to determine which of the
many possible terms should be included in the continuous-time model. These issues will be
investigated in the following section.

3.1. LINEAR CONTINUOUS TERMS RECONSTRUCTION

Consider initially the case n"1 in equation (15) to yield the linear equivalence
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The well-known map between the s- and the z-plane is illustrated in Table 1.
Conventionally, the s-data is extracted along the imaginary (frequency) axis, that is,
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response, and this leads to algorithms solely in the frequency domain [9]. However, during
the application of this approach to some real examples it was found that sometimes
the results under this s-data selection criterion do not satisfy the mapping in the whole of
the s-plane. In this paper therefore the s-data will be selected randomly along both the
imaginary and the real axis of the s-plane to guarantee the mapping on both axes.

Assuming that a NARMAX model has been identi"ed from sampled data records the
linear transfer function can be computed from equation (11) to yield
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Thus,
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partitioned into real and imaginary parts as
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This basic procedure will be applied to all the model reconstructions.

Although equation (22) is a linear-in-parameters expression, if least squares is applied
directly the estimates would be biased because E
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or in matrix form
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and the noise E
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(s) is reduced to a white signal m
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(s) and unbiased estimates of the system

parameters will be obtained using least squares. This is essentially a modi"ed version of the
generalised least-squares (GLS) algorithm developed by Clarke [14].

The practical implementation of the above idea can be summarised in the following steps
and is summarised in the #ow chart in Figure 1.

(1) Randomly select s(i)"[R (i), jI(i)], i"1,2, N in the s-plane and form Z and P in
equation (22). Apply the standard linear least squares to obtain the initial estimates of
U) in equation (22). These estimates will be biased if the noise is coloured.
Figure 1. Flow chart of the reconstruction procedure for continuous-time linear term.
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(2) Analyse the residual from equation (21):
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3.2. QUADRATIC NON-LINEAR CONTINUOUS-TERM RECONSTRUCTION
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)#Hasym
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2
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)]N#N
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2
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"

4L`7
+
i/1

h
i
¹(s

1
, s

2
)#N

2
(s
1
, s

2
), (28)

where HK sym
2

(z
1
, z

2
) is computed from the NARX model parameters as described in section

2 and

N
2
(s
1
, s

2
)"
=

2
(s
1
, s

2
)

Q
2

(s
1
, s

2
)

m
2
(s
1
, s

2
),

where m
2
(s
1
, s

2
) is a two-dimensional independent, zero mean white noise.

Notice that the coe$cients c
1.0

( ) ) have been estimated in the previous step where the
linear terms were reconstructed, so equation (28) is linear-in-the-parameters. Unbiased
least-squares estimates of the unknown coe$cients can therefore be obtained by using
a generalised least-squares-type algorithm as in the linear case. This consists of the
following steps. Note that s

1
and s

2
are vectors consisting of data points over the s-plane.

For simplicity, detailed expanded formulations are omitted here, but the algorithm consists
of the following steps and is illustrated in the #ow chart in Figure 2.

(1) Apply standard least squares to equation (28) to obtain estimates of hK
i
, i.e., cL

0,2
( ) ),

cL
1,1

( ) ) and cL
2,0

( ) ), which will be biased if N
2
(s
1
, s

2
) is not white.

(2) Analyse the residual NK
2

(s
1
, s

2
) from equation (28):

NK
2
(s
1
, s

2
)"HK sym

2
(s
1
, s

2
)!

4L`7
+
i/1

h)
i
¹(s

1
, s

2
). (29)

(3) Estimate a "lter FK
2
(s
1
, s

2
) as

FK
2
(s
1
, s

2
) NK

2
(s
1
, s

2
)"m

2
(s
1
, s

2
) (30)

using least squares so that

FK
2
(s
1
, s

2
)"=K ~1

2
(s
1
, s

2
)QK

2
(s
1
, s

2
).



Figure 2. Flow chart of the reconstruction procedure for continuous-time quadratic non-linear term.
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(4) Multiply both sides of equation (28) by FK
2
(s
1
, s

2
),

FK
2

(s
1
, s

2
) HK sym

2
(s
1
, s

2
)"

4L`7
+
i/1

h
i
FK
2
(s
1
, s

2
)¹ (s

1
, s

2
)#m

2
(s
1
, s

2
) (31)

and apply least squares to get estimates of the parameters hK
i
, i.e., cL

0,2
( ) ), cL

1,1
( ) ), cL

2,0
( ) ).

(5) Go to step (2) and repeat until the estimates converge.
This procedure can be continued for higher order non-linearities, n"3,4,2 , etc.

3.3. MODEL STRUCTURE DETERMINATION

The sequential construction of the model starting with the linear terms, followed by the
quadratic terms, and so on as described in the previous subsections forms the basis of the
solution. But in practice only a few of the numerous possible candidate linear, quadratic,
cubic, etc., terms will be relevant. It is therefore important, when no a priori information is
available regarding the continuous-time model, to be able to select signi"cant model terms
at each stage of the model reconstruction. This can be achieved using a modi"cation of the
orthogonal least-squares method (OLS) [17].

Consider a system expressed by the linear-in-the-parameters model

z"
M
+
i/1

h
i
p
i
#e, (32)

where h
i
, i"1,2 ,M are unknown parameters.
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Reformulating equation (32) in the form of an auxiliary model yields

z"
M
+
i/1

g
i
w
i
#e, (33)

where g
i
, i"1,2 , M are auxiliary parameters and w

i
, i"1,2 , M are constructed to be

orthogonal over the data record such that

N
+
t/1

w
j
(t)w

k`1
(t)"0, j"0, 1,2 , k, (34)

where N is the length of the data record.
Multiplying the auxiliary model (33) by itself, using the orthogonal property (34) and

taking the time average gives

1

N

N
+
t/1

z2 (t)"
1

N

N
+
t/1
G

M
+
j/0

g2
i

w2
i
(t)H#

1

N

N
+
t/1

e2 (t). (35)

Finally, de"ne

ERR
i
"

+N
l/1

g2
i
w2
i
(t)

+N
t/1

z2 (t)!(1/N)M+N
t/1

z (t)N2
]100 (36)

for i"1, 2,2 ,M. The quantity ERR
i
is called the error reduction ratio and provides an

indication of which terms should be included in the model in accordance with the
contribution each term makes to the energy of the dependent variable. Terms with
associated ERR values which are less than a pre-de"ned threshold value (e.g., 0)01) can be
considered to be insigni"cant and negligible.

However, this idea cannot be applied directly to the iterative identi"cation procedures
described in section 3. In general, the result of the "rst iteration will be biased and this will
not give the correct signi"cance of each term. Some modi"cation must therefore be made
when implementing OLS in this particular application. Simulations suggest that the best
solution to this problem is to begin with an overparameterized model structure. When the
parameters of this model converge, the terms where the ERR values are below the threshold
are then eliminated. Finally, re-estimate the parameters for this reduced model structure
and hence obtain the "nal coe$cients. This ideas is illustrated in the following simulation
example.

The selection of the order of the "lters FK ( ) ) and FK
2
( ) , ) ) is also important, and the OLS

algorithm can also be used to determine these orders.

4. SIMULATION EXAMPLE

Consider the non-linear system

1 y#0)002 Dy#0)0001 D2y!1 u#0)1 y2!0)006 yDy"0. (37)

This model was simulated using MATLAB. The input signal was chosen to be a random
sequence with amplitude $1, and 1000 input-output data were collected after sampling at
400 HZ. A white noise was then added to the output to give a SNR of 20 dB.
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4.1. NARMAX IDENTIFICATION

The "rst step in the identi"cation procedure is to identify a NARMAX model of the
system. An enlarged model structure was used to represent the system, and after passing all
the model validation tests [18] the "nal model was obtained as

y(k)"0)22099y(k!1)!0)28266y(k!8)#0)00073y(k!2)#0)11415u(k!2)

#0.13593u(k!3)#0)16375u(k!5)#0)09909y(k!3)#0)13737u(k!4)

#0)02375y(k!3)y(k!8)#0)08582y(k!9)#0.13896u(k!7)#0)04719u(k!1)

!0)34567y(k!12)#0)11822u(k!6)!0)0840y(k!7)y(t!9)#0)13378y(k!1)y(k!2)

#0)09797u(k!8)#0)08407u(k!9)!0)06159y(k!13)#0)07489u(k!10)

!0)09918y(k!10)y(k!11)#0)03417u(k!11)!0)09156y(k!11)#0)1092y(k!5)

#0)08644y(k!10)#0)10144y(k!7)y(k!15)!0)10199y(k!9)y(k!14)

#0)01344u(k!12)!0)02788y(k!16)!0)09730y(k!2)y(k!8)#Hm#m(k),

(38)

where Hm represents the noise model terms. Discarding the noise model terms Hm which
were included to ensure unbiased process model parameters and m(k) in equation (38), H

1
(z)

and the asymmetric form of H
2
(z

1
, z

2
) can be computed directly from the parameters of the

NARX model as

H
1
(z)"

[0)04719z~1#0)11415z~2#0)13593z~3#0)13737z~4#0)16375z~5#0)11822z~6
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#0)08582z~9!0)08644z~10#0)09156z~11#0)34567z~12#0)06159z~13#0)02788z~16]
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2
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1
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2
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2
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(40)
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The non-linear di!erential equation model can now be constructed sequentially. Just the
linear model terms are identi"ed "rst, followed by the quadratic non-linear terms and so on.
At each step the algorithm determines the appropriate model terms and produces estimates
of the unknown parameters.

4.2. LINEAR TERM RECONSTRUCTION

A total of 500 HK
1
(z) data points with z"esT were generated in equation (39) choosing

s"[t
1
, jt

2
] where t

1
, t

2
were selected as random points over 0}500.

An initial overparameterized structure was used with "ve linear input terms and three
linear output terms. The results using the iteration procedure in section 3.1 are listed in
Table 2. The ERR values obviously suggest that the extra terms D4 y, D3y, Du and D2u can
be removed from the model structure. Eliminating these terms and re-applying the
estimator provide the "nal results in Table 3. A comparison of the results in Tables 2 and
3 shows that the estimates from the "rst iteration were biased as expected.

The order of the "lter FK (s) was determined based on the ERR values obtained when
estimating the "lter FK (s)EK

1
(s)"m

1
(s). When the order was set to be 10, the sum of the ERR

values was 99)992% suggesting that the order of the "lter was adequate and FK (s)EK
1
(s)

should be white. Figure 3 shows a comparison of the autocorrelation of the true N
1
(s) and

the estimated NK
1
(s). Figure 4 shows the autocorrelation of the estimated EK

1
(s) and the

estimated mK
1
(s)"FK (s)EK

1
(s). It can be seen that EK

1
(s) has been reduced to white mK

1
(s) by the

operation of the "lter FK (s).

4.3. NON-LINEAR TERM RECONSTRUCTION

The data points were generated from equation (40) with z
1
"es

1
¹, z

2
"es

2
¹ along s

1
,

s
2
"[t

11
, jt

22
] where t

11
, t

22
are random points between 0 and 220. A total of 70 points

were chosen along both axes. Initially, an overparameterised non-linear model with model
TABLE 3

Final linear-term identi,cation

Terms D2y Dy u

Estim's of 1st itera 7)5832]10~05 1)8424]10~3 !0)84392
Estim's converged 0)00009951 0)0019168 !0)96325
True value 0)0001 0)002 !1)00
ERR (%) 63)8562 1)7937 34)3461

TABLE 2

Initial identi,cation resutls based on an overparameterised model structure for the linear-term
reconstruction

Terms D4y D3y D2y Dy u Du D2u

Estim's 3)12]10~10 2)885]10~9 1)03]10~4 1)891]10~3 !0)961 !7)23]10~5 !1)83]10~6
ERR (%) 2)99]10~3 2)23]10~7 26)99 1)107 71)90 4)70]10~5 5)63]10~4



Figure 3. Autocorrelation text of N
1
(s) (upper) and NK

1
(s) (lower).

Figure 4. Autocorrelation test of EK
1
(s) (upper) and mK

1
(s) (lower).
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terms y2, yDy, DyDy and yu was used. Applying the iterative procedure in section 3.2 and
retaining the two most signi"cant terms produced the results illustrated in Table 4. The sum
of ERR values of 99)655% implies that the terms y2 and yDy are su$cient to represent the
non-linear phenomena.

5. IDENTIFICATION OF AN ELECTROMAGNETIC BEARING SYSTEM

The data used in this example was collected from a #ywheel energy storage unit for an
electric car. The main component in this unit is the electromagnetic bearing system



TABLE 4

Final quadratic non-liner term identi,cation

Terms Estim's of 1st Estim's True value EER(%)
itera converged

y2 0)0794 0)0990 0)1 17)184
yDy !0)0056 !0)0055 !0)006 82)471
SUM (ERR)% 99)655

Figure 5. Schematic diagram of the electromagnet system.
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illustrated in Figure 5. It is known that a quadratic non-linearity usually relates the force F
n

and the input currents i
n
, n"1,2 in Figure 5. A continuous-time model is required for this

system so that the designers can relate the system components to the model and to produce
more insight for subsequent controller design studies. The block diagram of the
experimental set-up is illustrated in Figure 6, where r (t) is a random signal that was added
for the purpose of identi"cation. The output x(t) and the input i(t) were measured, as
pointed in Figure 6 and shown in Figures 7 and 8, at the sampling time interval 1)5]10~4 s.

The input}output data was decimated to give an e!ective sampling time interval of
4)5]10~4 s. A quadratic NARMAX model with only output non-linear terms was
identi"ed.

The reconstructed continuous-time non-linear model is derived in equation (41).
A comparison of the linear part of the reconstructed continuous-time model and the NARX
model is illustrated in Figure 9 and this shows that the mapping on the imaginary and the
real axis are recovered with very little error. Figure 10 shows the comparison of the
quadratic non-linear frequency response of the reconstructed continuous-time model and
the NARX model. Finally, a comparison of the measured output and the simulated output
from reconstructed continuous-time model with the same input signal at the original
sampling interval of 1)5]10~4 s is illustrated in Figure 8. This comparison is only possible
because the continuous-time model can be simulated for any sample interval.

D12x#1)404695]103D11x#1)595366]107D10x#1)978458]1010D9x#9)027335]1013D8x

#9)283008]1016D7x#2)199978]1020D6x#1)654813]1023D5x#2)255742]1026D4x

#9)989155]1028D3x#7)261332]1031D2x#9)738196]1033Dx#2)418980]1036x



Figure 6. Block diagram of the controlled system.

Figure 7. Input signal i(t).
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!26)02691D11i#2)147129]1004D10i!4)316928]108D9i#1)120871]1011D8i

!2)637928]1015D7i!8)1704940]1017D6i!7)184292]1021D5i!5)484130]1024D4i

!8)640049]1027D3i!8)046999]1030D2i!3)588718]1033Di!3)025046]1036i

!2)303532]1036 i2!1)373715]1031 iD2i#2)927454]1022DiD4i!8)099636]1017DiD5i

#1)646983]1033iDi#1)880561]1023D2iD3i!8)363859]1024 iD4i

#4)383683]1019D2iD4i!0)029673D6iD7i!1)664776]105D4iD7i"0.

6. CONCLUSIONS

A new algorithm for reconstructing linear and non-linear di!erential equation models
from sampled data by identifying a non-linear di!erence model has been proposed as



Figure 8. A comparison of the measured output and the simulated output from the reconstructed
continuous-time model for the electromagnetic suspension system at the original sampling interval

Figure 9. Comparison of linear part of the reconstructed continuous-time model and the NARX model for the
electromagnetic suspension system: upper-comparison along the imaginary axis (solid*NARX,
dashed*continuous); lower-comparison along the real axis (solid*NARX, dashed-continuous).
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a practical means of implementing the kernel invariance procedure. It has been shown that
by combining the procedures of generalised least squares, with the orthogonal estimator
and the error reduction ratio that the parameters and the structure of non-linear di!erential
equation models can be identi"ed without the need to compute higher order derivatives of
noisy data.



Figure 10. Comparison of quadratic frequency response of the reconstructed continuous-time model and the
NARX model for the electromagnetic suspension system: upper*from NARX: lower-from the identi"ed
continuous time model.
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APPENDIX A: NOMENCLATURE

ARMAX auto-regressive moving average model with exogenous input
ERR error reduction ratio
KIA kernal invariance algorithm
KIM kernel invariance method
NARMAX non-linear auto-regressive moving average model with exogenous input
NARX non-linear auto-regressive model with exogenous input
NDE non-linear di!erential equation
OLS orthogonal least squares
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